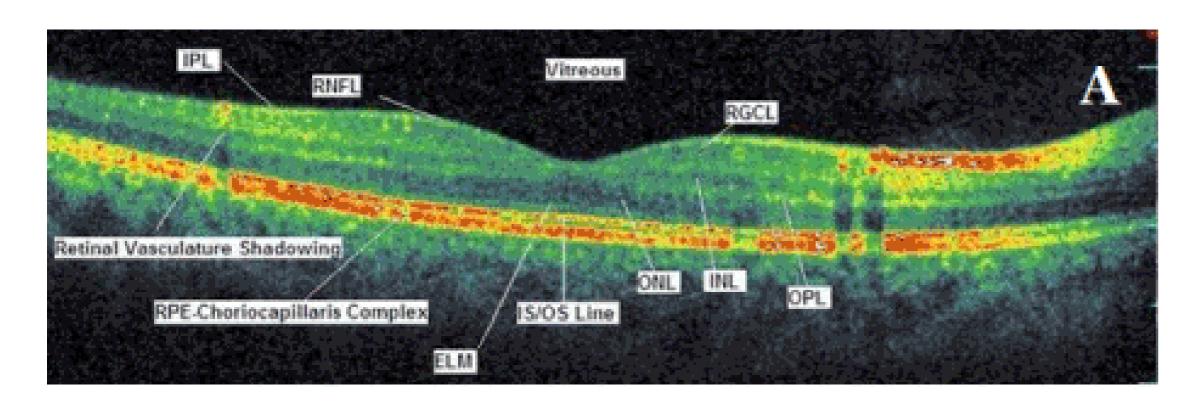


Serum neurofilaments predict recovery after acute optic neuritis



G Dalla Costa, M Pisa, L Fabbella, R Furlan, Comi G, Leocani L

Neurological Department, San Raffaele Hospital, Milan, Italy

Introduction

- •Optic neuritis is an immune-mediated disease of the optic nerve, strongly associated with multiple sclerosis (MS);
- •Although the visual prognosis of optic neuritis is generally favourable, the degree of remission varies considerably;
- •The degree of clinical remission is associated with the degree of optic nerve axonal loss, that can be quantified accurately by Optic Coeherence Tomography (OCT);
- •The neurofilament light chain (NfL) is part of the axonal cytoskeletal neurofilaments and is released upon immunemediated axonal damage during optic neuritis and MS;
- •We aimed to investigate if NfL levels sampled close after symptom onset would predict the outcome after optic neuritis.

Methods

- •Patients. Patients have been prospectively recruited from June 2013. They all had optic neuritis as a first demyelinating episode and serum was sampled within 3 months (median 1.5, interquartile range (IQR) 0.8–2.6) months after onset;
- •Visual tests. At baseline and follow-up patients underwent a diagnostic programme including tests of visual acuity by standard as well as low contrast letter acuity (LCLA) Sloan charts at 2.5% and 1.25%;
- •OCT analysis. Retinal layers (RNFL, GCL, IPL, INL, GCIP thickness have been measured using a high-resolutic spectral-domain OCT (SD-OCT) device using the Spectralis 3.5 mm standard circle scan protocol (Heidelberg Spectrali OCT: Spectralis; Heidelberg Engineering, Heidelber Germany). For the follow-up scans the AutoRescan™ feature has been used, allowing to automatically place follow-up scans in precisely the same location as the baseline scan minimizing subjective operator placement and alignme error;
- •NfL analysis. Blood samples have been collected in acu phases by venipuncture and stored at -80° C in cryogenic vials since then. The Simoa platform (Quanterix Corp, Boston, MA, USA) has ben used for quantifying NfL levels;
- •Statistical analysis. Multilevel mixed effect models have been used to assess the prognostic factor of baseline NfL levels on longitudinal changes in visual outcomes.

Results

A total of 31 patients (mean age 37.3 SD 8.7 years, 71% females) have been recruited and followed up (mean 27.6, SD 12.3) for an acute optic neuritis; eleven patients (35%) had enhancing lesiong at the optic nerve at baseline, 17 (55%), had oligoclonal bands, and the median baseline level of serum NfL was 11.5 pg/ml (IQR 4.3-17.4)

Table 1. Baseline characteristics of the cohorts

	All eyes (n = 62)	Optic neuritis eyes (n = 31)	Asymptomatic eyes (n= 31)
Mean Visual Acuity ± SD	8.91 ± 4.78	7.83 ± 5.21	9.82 ± 2.63
Mean LCLA $2.5\% \pm SD$	1.97 ± 1.48	1.37 ± 1.42	2.59 ± 1.69
$Mean\ LCLA\ 1.25\% \pm SD$	1.68 ± 1.44	1.09 ± 1.34	2.36 ± 1.49
Mean RNFL thickness (μm) \pm SD	94.75 ± 11.78	90.52 ± 14.72	95.88 ± 10.65
Mean GCL thickness (μm) \pm SD	1.03 ± 0.14	0.93 ± 0.15	1.06 ± 0.13
Mean IPL thickness $(\mu m) \pm SD$	0.86 ± 0.10	0.79 ± 0.11	0.88 ± 0.08
Mean INL thickness (μm) \pm SD	0.95 ± 0.07	0.96 ± 0.09	0.95 ± 0.07
Mean GCIPL thickness $(\mu m) \pm SD$	1.50 ± 0.50	1.52 ± 0.51	1.49 ± 0.50

Figure 1. Baseline neurofilaments levels and visual outcomes

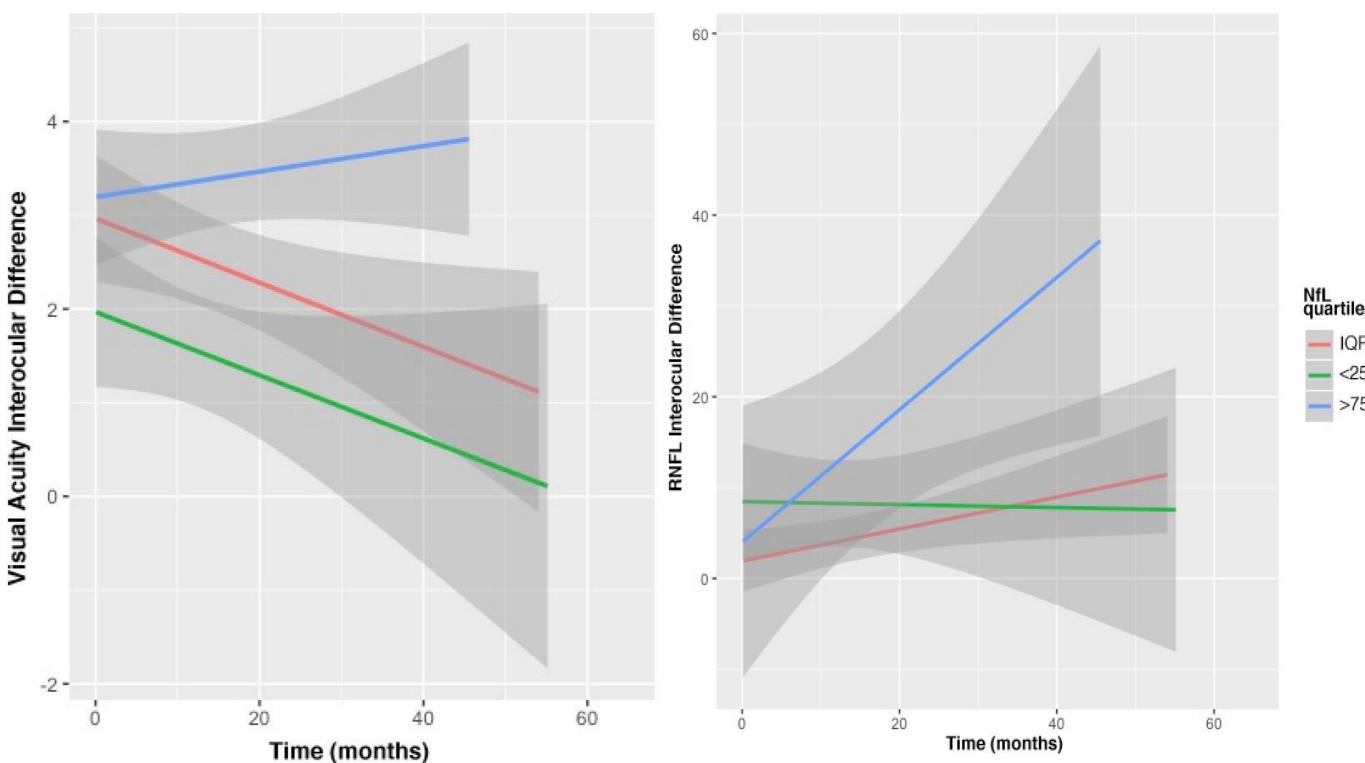


Table 2. Baseline neurofilaments levels and visual outcomes

	Baseline Neurofilament Levels		
	<25%ile	25-75%ile	> 75%ile
Inter-Ocular Visual Acuity Difference	0.13 (0.023)	reference	0.05 (0.02) §
Inter-Ocular LCLA 2.5% Difference	0.01 (0.02)	reference	-0.02 (0.02)
Inter-Ocular LCLA 1.25% Difference	-0.01 (0.02)	reference	-0.01 (0.02)
Inter-Ocular RNFL thickness (µm) Difference	-0.31 (0.20)	reference	0.64 (0.20) §§
Inter-Ocular GCL thickness (µm) Difference	-0.01 (0.01)	reference	(0.01)(0.01)
Inter-Ocular IPL thickness (µm) Difference	0.04 (0.07)	reference	(0.05 (0.06)
Inter-Ocular INL thickness (µm) Difference	0.00 (0.01)	reference	0.01 (0.01)
Inter-Ocular GCIPL thickness (µm) Difference	0.01 (0.01)	reference	0.02 (0.01)

Conclusions

- •After an acute optic neuritis, patients improved substantially during the follow-up period in their visual acuity; however, a significant thinning in different OCT parameters was detectable from baseline to follow-up;
- •Serum levels of NfL measured in the acute phase of optic neuritis predict both visual outcome and the degree of permanent neuronal and axonal loss as measured by OCT;
- •NfL are promising biomarkers candidate for neuroprotective or regenerative clinical treatment trials aiming to prevent neuronal damage after relapse in MS and in optic neuritis;
- •Further prospective studies enrolling a larger number of patients with acute optic neuritis are needed to validate our results.